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A New Approach to Linear Temperature Programming 
Calculations 

A. S. SAID 
ARAB DEVELOPMENT INSTITUTE 

P.O. BOX 8004 
TRIPOLI, LIBYA 

Abstract 

The theory of temperature programming has been reexamined. It is shown 
that a linear program leads to an explicit relation for the retention temperature 
in terms of the inverse exponential integral. Numerical examples are solved 
using a straight line plot of the exponential integral together with a plot based on 
the equivalent temperature concept. A simple explicit expression in terms of 
common functions for the retention temperature during linear temperature 
programming was deduced. This was made possible using the inverse log 
nonlinear program which can be made to approximate quite closely a linear 
program. This expression was used to explain the constancy of intervals and 
other phenomena encountered during the linear temperature programming of 
homologous series. 

INTRODUCTION 

A rigorous treatment of temperature programming is very difficult, 
and the equations derived are complicated even with a linear rate of 
temperature rise. The relations developed so far for linear temperature 
programming have been in terms of the not too common exponential 
integral (1-3). The difficulty in handling this integral has made it hard to 
explain and to give easy proofs for some of the phenomena encountered 
in the case of linear temperature programming. 
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FIG. 1. Typical temperature programmed run. 

regardless of the rate of temperature rise, the members of a homologous 
series emerge evenly spaced during linear temperature programming. It is 
also an experimental fact that with a high rate of temperature rise the 
spacings become even after the emergence of a small number of the first 
members, and the lower the rate of temperature rise, the greater the 
number of components which emerge unevenly spaced at the beginning of 
the chromatographic run. Figure 1 represents a typical temperature 
programmed run. The lower part of the figure is a symbolic representation 
of the positions of the peak maxima. 

These and other phenomena are encountered experimentally, but it 
has been always difficult to give straightforward explanations or proofs. 
For example, if one starts with a linear rate of temperature rise equal to 
0.1 "C/min or even 0.001 "C/min, will the spacings ever become even and, 
if so, at what carbon number and what is the magnitude of this constant 
spacing? So far, the answers to such questions have not been too easy 
mostly because no simple explicit relation for the retention temperature 
was deduced. 

Several years ago it was pointed out by this author (3) that some 
nonlinear programs, such as the inverse linear and the inverse log pro- 
grams, lead to analytic solutions in terms of simple and common functions. 
One of these programs (the inverse linear) was developed by this author 
in the same paper. It was also studied and developed further by Szepe (4) ,  
who found that easy expressions are obtained even if the column-free 
volume was taken into account, 
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LINEAR TEMPERATURE PROGRAMMING CALCULATIONS 31 

There is, however, much more interest in linear temperature program- 
ming because it is easier to make instruments with linear programs. 
Furthermore, a nonlinear program can be approximated by a series of 
linear programs having different slopes. 

Further investigations of the different nonlinear programs by this author 
showed that the inverse log program can be made to approximate quite 
closely a linear program over a large span of temperature rise. This made 
it possible to deduce easy and explicit relations for linear temperature 
programming, particularly for the retention temperature, and it was 
therefore easy to explain qualitatively as well as quantitatively many of 
the experimental findings. 

ASSUMPTIONS MADE 

It was necessary, however, to make some simplifying assumptions in 
order to avoid mathematical complications. The main assumptions made 
in the course of this treatment follow. 

Assumption I 

This is the fundamental differential equation. It means that at any 
point in the column shown in Fig. 2 ,  the differential fractional length 
traversed is equal to the differential fractional time with respect to the 
isothermal retention time at the corresponding temperature. This equation 
is exact in the case of incompressible eluents. It also leads to correct 
answers in the case of compressible fluids whether it is a constant pressure 
or constant flow operation. This was shown to be true by this author and 
co-workers several years ago (5) as long as the integration is performed 
over the total column length, in which case the pressure effect cancels out. 

FIG. 2. Schematic of the column used for making assumptions. 
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Assumption II 

SAID 

t ,  = aebIT (2) 
Equation (2) means that the isothermal retention time t, vs the tempera- 

ture is a straight line on log-reciprocal chart paper as shown in Fig. 3A, 
where a and b are constants. This equation applies better to the net reten- 

A H  
7 8 9 10 11 12 15 20 25 30 50 100 

I 1 l l 1 l 1 l 1 l  I I I I I I I I I I I I I I I I I  I 

0 50 100 150 200 250 300 

Temp *C 

FIG. 3A. Log-reciprocal chart for Eq. (2). 
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LINEAR TEMPERATURE PROGRAMMING CALCULATIONS 33 

tion time, but here we assume that it also applies to the uncorrected 
retention time and that the heat of solution A H  is constant, b = A H / R .  
The usefulness of thz chart is increased by introducing an outside scale 
on which A H  is read at the point where a parallel line from the origin 
meets the scale. This is accomplished easily with the help of a transparent 
sheet on which a large number of parallel lines ar: drawn at small distances 
from each other (Fig. 3B). For convenience, the abscissa in Fig. 3A 
is marked in "C. 

FIG. 3B. Overlay for Fig. 3A. 
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It is a well-known fact that except for thLe first few compounds and 
For homologous series the following two assumptions are also made: 

AHn = i- ,B (3) 

t r , n  = t r , n -  (4) 

and 

For a homologous series, f l  is not a function of temperature or the 

From the above equations one deduces the following relation for a 
carbon number n, while 01 is a function of temperature but not of n. 

6 I A H  
8 9 10 11 12 15 20 30 50 100 

I I 1 1 1 1 1 1 I 1 1  IIIILuLllulll IIlI11111II I 

Temp "C 

FIG. 4. Plot of Eq. (6). 
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homologous series : 

35 

( 5 )  

or 

AH, + (n - l)B AH1 + (n - 1)p - 
t rn  = t r l , , aon- l  exp[ RT RTO 

Figure 4 is a plot of Eq. (6) on Fig. 3 where t,,,, = 2 min, a0 = 1.8 at 
20°C, AHl = 6000 cal/mole, and /? = 500 cal/mole. 

DEVELOPMENT OF THE FUNDAMENTAL 
RELATION FOR A LINEAR PROGRAM 

For a linear program 

T = T , + r t  (7) 

where r is the linear rate of temperature rise and t is the time. 
Substituting from Eqs. ( 2 )  and (7) into Eq. (1) and integrating over the 

whole column length bctween inlet temperature To and outlet temperature 
T,, one gets 

ra 
- b = %Af) - Y(ho) 

where 
a = t,e-'IT 

t ,  is the retention time corresponding to temperature T, b = AH/R, and 

b AH 
T RT 

A = - = -  

Y ( h )  is the exponential integral defined by the relation 

Y ( h )  = ( e - x / x z )  dx (9) s,m 
This integral is tabulated in many references and is plotted in Fig. 5 

for values of h of chromatographic interest; namely, from h = 6 to 
h = 17. The ordinate is a multicycle log scale, and the scale of the abscissa 
is calculated according to a derived function in order to give a straight-line 
plot. 
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FIG. 5 .  Plot of Eq. (9) for values of h. 
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LINEAR TEMPERATURE PROGRAMMING CALCULATIONS 37 

If in deriving Eq. (8) the integration was performzd over a fraction x of 
the column between temperatures TI  and T, instead of the total column 
length, one gets 

xralb = 'I?(&) - Y(h,) (10) 

X Z I X l  = r1Irz (1 1) 

When h, and h ,  are fixed, Eq. (10) leads to 

Which means that, between two fixed temperatures on the column 
length, the fraction of column covered by a component is inversely propor- 
tional to the rate of temperature rise. 

This is an important relation. It is correct for incompressible eluents 
and should be used with some care in the case of compressible fluids 
because the pressure effect cancels out only over the total length of the 
column and not over a fraction of the column length. 

AM E X P L I C I T  R E L A T I O N  F O R  T H E  
R E T E N T I O N  TEMPERATURE Tf 

An explicit relation for Tf  can be easily deduced from Eq. (8) which 
gives 

therefore 

The symbol Y-' represents the inverse of the exponential integral as 
much as the log function is the inverse of the exponential function. A 
table of the inverse exponential integral can be prepared from existing 
tables of the exponential integral. A graph of the inverse function may be 
prepared from that of the original function simply by making the ordinate 
an abscissa and vice versa. Since h, = b/T,, one gets a direct relation for 
T, in terms of the inverse exponential function: 

Although Eq. (14) is a direct or explicit relation of the retention tempera- 
ture Tf, it is in terms of an uncommon function, namely, the inverse 
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exponential integral function, and this restrictst the use of Eq. (14). An 
explicit relation of T, in terms of common and easy functions will be 
developed later in this paper. 

THE EFFECT OF TEMPERATURE ON 
THE RELATIVE VOLATILITY 

Assuming that 

b Z = b l  + p  
then 

so that 

THE EQUIVALENT TEMPERATLJRE CONCEPT 

The equivalent tempzrature concept was first introduced by this author 
(3). The equivalent temperature T, is defined as the temperature at which 
the isothermal retention time is equal to the programmed retention time 
tp  between inlet and outlet temperatures To and Tf, respectively. 

In temperature programming calculations, one is usually interested in 
one of the following: 

(a) Given the final temperature T,, what is r or t,? 
(b) Given r ,  what is T, or t,? 
(c) Given t,, what is r or T,? 

In all cases To is also given. A plot of t r  vs T on log-reciprocal graph 
paper for the component under consideration should be available, or the 
data necessary to prepare the plot such as, foip example, two isothermal 
retention times at two different temperatures. 

Case (a) and Case (b) are solved directly using Eqs. (8) and (14), while 
Case (c) can be solved only by trial and error. I t  is possible to plot Eq. (8) 
in such a way that trial and error will not be needed for Case (c), but a 
much easier approach would be via the equivalent tempxature concept. 
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LINEAR TEMPERATURE PROGRAMMING CALCULATIONS 39 

In this case the constant a in Eq. (8) is given by 

a = t, exp ( -b/T,) 

and 

Substituting in Eq. (8), one gets 

A plot of Eq. (17) would be useful in calculating the linear rate needed 
to elute a component in a given time. One may plot b/T, vs b/T, with 
b/T, as the parameter. A more useful chart which can be conveniently 
used in solving Case (c) is prepared as follows. 

Fixing 0, in Eq. (17) at 20°C, Eq. (17) is solved and a table is prepared 
in which 0, is tabulated for different values of 0, with A H  as the parame- 
ter (Table 1). 0,, Of, and 0, are the inlet, outlet, and equivalent tempera- 
tures, respectively, in "C. Figure 6 is then drawn in which 0, - 0, is 
plotted vs 0, - 20 with AH as the parameter. One can show that Fig. 6 
can be used to solve Case (c) regardless of the starting temperature. It is, 
in fact, a plot of (0, - 0,)' vs (0, - 0,)' with AH' as the parameter 
where 

273 + 20 
= (0, - 0,)f 273 + 0, (0, - 0,)' = (0, - 0,) 

Similarly, 

273 + 20 
273 + 0, = (0, - 0,)f (0, - 0,)' = (0, - 0,) 

and 

273 + 20 
273 + e, = A H x f  AH' = A H  

If, in preparing Table 1, the starting temperature was fixed at  any 0, 
instead of 20°C, it should lead to  the same result. In this case 

273 + 0, 
= 273 + 0, 
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TABLE 1 

SAID 

0, 

Q, A H = 5  6 7 8 9 10 11 12 15 

30 
40 
50 
60 
70 
80 
90 

I00 
110 
120 
130 
140 
I50 
160 
170 
I80 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 

25.1 
30.3 
35.7 
41.3 
46.9 
52.6 
58.4 
64.3 
70.2 
76.2 
82.2 
88.2 
94.2 

100.3 
106.4 
112.4 
118.5 
124.6 
130.7 
136.8 
142.8 
148.9 
154.9 
170.0 
167.0 
173.0 
179.0 
185.0 
191.0 
197.0 
202.9 
208.9 
214.8 

25. I 
30.4 
35.9 
41.6 
47.4 
53.3 
59.3 
65.4 
71.5 
77.7 
83.9 
90.2 
96.5 

102.8 
109.1 
115.5 
121.8 
128.1 
134.5 
140.8 
147.1 
153.4 
159.7 
166.0 
172.3 
178.6 
184.8 
191.0 
197.3 
203.5 
209.7 
215.9 
222.0 

25.1 
30.5 
36.1 
41.9 
47.9 
54.0 
60.2 
66.4 
72.8 
79.2 
85.6 
92.1 
98.6 

105.2 
111.7 
118.3 
124.8 
131.4 
137.9 
144.5 
150.0 
157.5 
164.0 
170.5 
177.0 
183.5 
190.0 
196.4 
202.9 
209.3 
215.7 
222.1 
228.4 

25.2 
30.6 
36.3 
42.3 
48.4 
54.6 
61 .O 
67.4 
74.0 
80.6 
87.2 
93.9 

100.6 
107.3 
114.1 
120.8 
127.6 
134.3 
141.1 
147.8 
154.5 
161.2 
167.9 
174.6 
181.3 
188.0 
194.6 
201.3 
207.9 
214.5 
221.0 
227.6 
234.2 

25.2 
30.7 
36.5 
42.6 
48.8 
55.2 
61.8 
68.4 
75.1 
81.9 
88.7 
95.6 

102.5 
109.4 
116.3 
123.2 
130.1 
137.0 
143.9 
150.8 
157.7 
164.6 
171.5 
178.3 
185.2 
192.0 
198.8 
205.6 
2 12.4 
219.1 
225.9 
232.6 
239.3 

25.2 
30.8 
36.7 
42.9 
49.3 
55.8 
62.5 
69.3 
76.2 
83.1 
90.1 
97.1 

104.2 
111.2 
118.3 
125.4 
l32.5 
139.5 
146.6 
153.6 
160.7 
167.7 
174.7 
181.7 
188.7 
195.7 
202.6 
209.5 
216.5 
223.4 
230.2 
237.1 
243.9 

25.2 
30.9 
36.9 
43.2 
49.7 
56.4 
63.2 
70.2 
77.2 
84.3 
91.4 
98.6 

105.8 
113.0 
120.2 
127.4 
134.6 
141.8 
149.0 
156.2 
163.3 
170.5 
177.6 
184.8 
191.9 
199.0 
206.0 
213.1 
220.1 
227.2 
234.2 
241.2 
248.1 

25.3 
31.0 
37.1 
43.5 
50.1 
57.0 
63.9 
71.0 
78.2 
85.4 
92.7 

100.0 
107.3 
114.6 
121.9 
129.3 
136.6 
143.9 
151.2 
158.5 
165.8 
173.1 
180.3 
187.6 
194.8 
202.0 
209.2 
216.4 
223.5 
230.7 
237.8 
244.9 
252.0 

25.3 
31.2 
37.6 
44.3 
51.3 
58.5 
63.9 
73.3 
80.8 
88.4 
95.9 

103.6 
111.2 
118.8 
126.4 
134. I 
141.7 
149.3 
156.9 
164.5 
172.1 
179.6 
187.2 
194.7 
202.2 
209.7 
217.2 
224.6 
232.1 
239.5 
246.9 
254.3 
261.6 
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140 

0 
120 

e,= 20 c 
100 

\ 
n 

cDa 80- 
I 
a* 60 
Y 

40 

20 

n 
0 20 40 60 80 100 120 140 160 180 200 

(6, -eJ 
FIG. 6 .  Solution of Case (c). 

Example 1 

I.  

11. 

Starting from 40°C at a rate of 20"C/min, how long will it take to 
elute Component A in Fig. 7 and what is the outlet temperature? 
What is the linear rate needed to elute Component A in 6 min starting 
from 50 "C ? 

Answer 

I. From Fig. 7, 

AH = 8900 cal/mole 

t ,  = 33 min at 100°C 

therefore 
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1 

therefore 

A H  
7 8 9 10 11 12 15 20 30 50 

I I I I I I I l l l l  l l l l l l l l l l l l ~  

FIG. 7. Elution of Component A. 

a = 2.17 x 

- 14.22 
4450 

- 313 
h 

Y(ho)  = 2.7 x lo-' (from Fig. 5) 

20 x 2.17 x 
4450 

-- - 9.15 Y(h,) = 2.7 x lo-' + 
h, = 9.15 (from Fig. 5 )  
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LINEAR TEMPERATURE PROGRAMMING CALCULATIONS 43 

therefore 

and 

Tf = 486°K 

486 - 313 
20 = 8.65 min t, = 

11. To avoid trial and error, Fig. 6 is used. 

0, = 162°C (from Fig. 7) 

0, - 0, = 162 - 50 = 112°C 

293 
323 

293 
323 

(0, - 0,)l = 112- = 101.6"C 

AH' = 8.9- = 8.07 

From Fig. 6, 

(0, - 0,y = 57°C 

323 
293 0, - 0, = 57- = 62.8"C 

0, - 0, = 112 + 62.8 = 174.8"C 

r = 174.816 

= 29.5"C/min 

APPRO X I MATI N G TH E EXPO N E N TI AL I N TEG RAL 

The following approximation of the exponential integral for values of 
chromatographic interest was given by Giddings ( I ) .  

Approximation I 

(h + 0.85)' Y(h) = 

Following a systematic approach, a better approximation was deduced 
by this author (6) as follows. 
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Approximation II 

4e-h 
Y ( h )  = (2h - 1)(2h + 5 )  

Another convenient approximation which is a. little less accurate than 
Approximation I1 was also deduced by this author (6) as follows. 

Approximation I I I 

e - h  
h(h + 1.8) Y ( h )  = 

This approximation is only slightly better than Approximation I, but 
it is sometimes more convenient to handle it analytically as will be seen 
later in deducing the average relative volatility during a temperature 
programmed run. 

A comparison between the three approximations is given in Table 2. 

MIDCOLUMN A N D  FRACTION,AL LENGTH 
TEMPERATURE 

Even though the difference between inlet and outlet temperatures may 
be quite large, the temperature difference from the time the component 
reaches half the column and the time it reaches the column outlet is 
relatively small, being of the order of 20°C. If h, is the value of h when 

TABLE 2 

~~ ~~~ 

h Exact value Approximation I Approximation I1 Approximation 111 

5 2.00 x 10-4 1.97 x 10-4 
6 5.30 X 5.28 X 

7 1.48 X 1.48 X 

8 4.26 x 4.28 x 
9 1.26 x 1.27 x 

10 3.83 x 10-7 3.86 x 10-7 
11 1.18 x 10-7 1.19 x 10-7 

15 1.21 x 10-9 1.22 x 10-9 
12 3.69 x 3.72 x lo-* 

20 4.70 x 4.74 x 
25 2.06 x 2.08 x 

2.00 x 10-4 
5.30 x 1 0 - 5  
1.48 x 
4.26 x 
1.26 x 
3.82 x 10-7 
1.18 x 10-7 
3.68 x 
1.21 x 10-9 
4.70 x 
2.06 x I O - I 4  

1.98 x 
5.30 x 1 0 - 5  

1.48 x 10-5 
4.28 x 
1.27 x 
3.85 x 10-7 
1.19 x lo-' 
3.71 x 
1.21 x 10-9 
4.73 x 1 0 - 1 2  

2.07 x 10-14 
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the component is at fraction x of the column length and if Y(ho) can be 
neglected in comparison with "(A,) and Y(h,), which is generally the case 
when T, - To is more than 80°C and x is bigger than 0.3, then from Eq. 
(8) one deduces that 

x = W L ) / Y ( h , )  (21) 

From the tables of the exponential integral or from Fig. 5, it is possible 
to prepare a table which lists the values of hx - h, corresponding to 
different values of x with h, as the parameter. 

The value of h, - h, may be calculated analytically as follows: Starting 
with Eq. (20) (Approximation 111) for the exponential integral, one gets 

let 

(h, - A,) = Y 

Substituting in the above equation, we find 

Since y is small compared to h and since In (1 + g) = g when g is a small 
fraction, Eq. (22) reduces to 

1 

or 

In x 
h, - h, = - 

1 + (l/h,) + l / ( h j  + 1.8) 

(h, - h,) was calculated for different values of x when h, is equal to 
6 and 12. The values obtained are tabulated in Table 3. (h, - h,),, in 
the table is the arithmetic average of the two values at 6 and 12. 

AVERAGE RELATIVE VOLATILITY AND 
T H E S I G N I FI CAN T TEMPE RAT U RE 

During temperature programming the relative volatility between two 
components changes continuously as the components move along the 
column. The relative volatility usually decreases as the temperature 
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TABLE 3 

0.3 0.93 1.05 0.99 
0.4 0.71 0.80 0.75 
0.5 0.54 0.60 0.57 
0.6 0.40 0.44 0.42 
0.7 0.28 0.31 0.29 
0.8 0.17 0.19 0.18 
0.9 0.08 0.09 0.09 

increases. In the case of isothermal chromatography and if we neglect 
the pressure effect when the eluent is compressible, the relative volatility 
will be given by the ratio of the two distances traveled by the two compo- 
nents along the column. It is also given by thl: ratio of the two retention 
times. During temperature programming, however, the ratio between the 
two distances traveled along the column up to any temperature T will 
have a value somewhere between the relative volatility at T and that at 
the initial temperature To. This ratio is called the average relative volatility 
and is equal to the isothermal relative volatility at a temperature T' 
which is called the significant temperature between To and T. The signifi- 
cant temperature concept does not apply directly to the average relative 
volatility obtained from retention times in a temperature programmed run 
because in this case the two components have been subjected to different 
average temperatures. It applies only to the case of intrinsic resolution 
where the relative volatility is quite close to  1 ,  in which case the two 
components have been subjected to the same temperature all the time. 

In order to derive the equation from which aav during a temperature 
programmed run can be calculated, we start by deducing the fundamental 
differential equation. We assume that during a temperature programmed 
run when the temperature of the column was equal to T, Components 1 
and 2 were at distances I ,  and I,, respectively, and that during a differential 
increment of time dt, Component 1 traveled a distance dl, while Compo- 
nent 2 traveled a distance d12, then dl,/d12 = a, where a is the isothermal 
relative volatility at temperature T. 

By definition, a,, up to temperature TL is equal to L,/L,, where TL is 
the temperature when Component 1 has traveled a length of column equal 
to L ,  and Component 2 has traveled a length equal to L,. Therefore 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



LINEAR TEMPERATURE PROGRAMMING CALCULATIONS 

or 
1 1  

a a v  L I  o 

Substituting from the fundamental relations 

dl/L = dtJt, and a = t,,/t,, 

one gets 

where t,, is the programmed retention time for Component 1 but 

t,, = a2 exp (b2/T) 

Therefore 

For Component 1, according to Eq. (8) we have 

47 

(25) 

where 

b, = AH2/R 

and 

b,  = AH,/R 

from Eqs. (27) and (28), and neglecting Y(ho) in comparison with Y ( h f ) ,  
one gets 

for simplicity we denote b l / T f ,  by y , ,  b2 /Tf ,  by y,, and 

b2 = b,  + /3 
Substituting in Eq. (29) leads to 
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Applying Approximation 111 for the exponential integral where 

gives 

Since 1 + x = ex for a small value of x, then Eq. (30) leads to 

Comparison with the equation which follows from the definition of the 
significant temperature, namely 

leads to 

h,, + 1.8 
h,, + 2.8 T ' = T  ( ) (3 3) 

This result may be compared with the Giddings' relation for the signifi- 
cant temperature : 

Both Eq. (33) and the Giddings' equation give results which are suffi- 
ciently close to each other. Equation (34) can be rearranged to  give 

h' = h, + 0.85 (35) 
For comparison with the Giddings' formula, Eq. (33) is rearranged in 

the form 

This equation leads to 

h' = h, + I 

/is a function of h, whereas in the case of Eq. (35) it is a constant equal 
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TABLE 4 

hf 6 I 8 9 10 11 12 

I 0.77 0.80 0.82 0.84 0.85 0.86 0.87 

to 0.85. By equating Eqs. (33) and (36), it can be shown that 

I=------- h f 
h, + 1.8 (37) 

Table 4 lists the values of I corresponding to different values of h,. 
One can see from Table 4 that the average value of I for values of h, 

from 6 to 12 is equal to 0.82, while the average is equal to the Giddings’ 
value 0.85 for values of h from 8 to 12. 

RELATION BETWEEN h’ A N D  h, 

By comparing the values listed in Table 4 for the significant temperature 
with those listed in Table 3 for h, - h,, where h, is the value of h at 
fractional length x, it is evident that the significant temperature is the 
temperature at a fraction equal to 0.37 of the column length. This conclu- 
sion is still subject to the condition that the difference between To and Tf 
is large enough to  make Y(ho) very small in comparision with Y ( h f ) .  

NONLINEAR PROGRAMS 

As pointed out by this author (3), certain nonlinear programs lead to 
simple analytic expressions. Examples of such programs are : 

1. The inverse linear program 

T=------- TO 
1 - c,t 

2. The inverse square root program 
m 

1 0  

I - c z J i  
T =  

3. The inverse log program 

T =  1 - a\ log (1 + a,t) 

cl, c2,  a;, and a, are constants. 
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The inverse linear program gives a progressively increasing rate of 
temperature rise, and the inverse square root program gives a progressively 
decreasing rate of temperature rise, while the inverse log program gives 
a progressively increasing rate or a progressively decreasing rate depending 
on the values of the constants a; and a,. Tht: interest in this work is in 
the inverse log program because it can be made to replace a linear program 
for the purpose of easy computations. 

THE INVERSE LOG PROGRAM 

The inverse log program, as represented by Eq. (40), can be made to 
approximate quite closely a linear temperature program over a large span 
of temperature rise. In this case it can be demonstrated that the constant 
u; has a value close to 1 and, for simplicity, it is taken equal to 1 with little 
loss in accuracy, and Eq. (40) becomes 

(41) TO =- TO 
1 - log(1 + a,t) T =  1 - a ,  In (1 + a,t) 

where 
a ,  = In,, e = 0.4343 

a, is a function of the linear rate. The relation between a, and r is deduced 
by differentiating Eq. (41) with respect to t and equating (dT/dt),=o to the 
constant rate r. This leads to the relation 

a ,  = r /a lTo  (42) 

Figure 8 is a plot of the three nonlinear programs (Eqs. 38-40) between 
To = 50°C and T, = 200°C. The linear program is also shown for 
comparison. As can be seen from Fig. 8, the linear and inverse log pro- 
grams are almost identical; the maximum deviation from one another 
being less than 1 "C as can be seen from Table 5 

In  plotting Fig. 8, the value of a, can be obtained by two different 
methods : 

1. An exact method where To and T, are both known. Substituting in 
Eq. (41) gives the product a,t,. If the linear rate is assumed to be 
lO"C/min, then t ,  is equal to (200 - 50)jlO = 15 min. This gives a 
value of a2 = 0.0717. 
An approximate method using Eq. (42). This gives 2. 

= 0.0713 
r 10 - a 2 = - -  a l T o  0.4343 x 323 
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200 

150 

.o 

I Linear 

II Inv Lin 
IU Inv. Sq.R. 
Ip Inv. Log. 

10 

Time mins 

FIG. 8. Plot of three nonlinear programs. 

TABLE 5 

51 

15 

0 50 50 0.0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

bU 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

bU 

70 
79.9 
89.7 
99.6 

109.4 
119.3 
129.2 
139.1 
149.1 
159.1 
169.2 
179.4 
189.7 
200 

u.v 
0.0 

-0.1 
-0.3 
-0.4 
-0.6 
-0.7 
-0.8 
-0.9 
-0.9 
-0.9 
-0.8 
-0.6 
-0.3 
0.0 
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As can be seen, the two values of a2 are very ilose and this indicates that 
Eq. (42) is quite adequate. 

DEVELOPMENT OF THE EXPLICIT RELATION FOR T, 
IN TERMS OF COMMON FUNCTIONS 

Substituting Eqs. (41) and (2)  into Eq. ( I )  and integrating from t = 0 
to t = t,, one gets 

-- dt 
[ :a  exp {(b/To)[l - a ,  In (1 + a2t>1} - 1 

Simplifying, one gets 

which leads to 

Let 

then 

alb - + l = y  
TO 

1 

a2 
tp = -[(t,,a2y + - 11 

Since 

and 

a2 = r/alTo 

by substituting in Eq. (43), one gets 

T f  = To + a l T o [ ( t r o ~  ‘Y -t. 1)’”- 11 

or 

(43) 

(44) 
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Either Eq. (44) or Eq. (45) is an explicit relation for the retention 

When the term (rtro/alTo) is large due to a large rate of temperature 
temperature T, in terms of simple common functions. 

rise or a large isothermal retention time at To or both, 
a large number which may vary from 4 to 1 0  or more, 
may be neglected relative to (rt,,/a, To)y and we get 

and because y is 
then the Term 1 

T, = (1 - al)To + alTo 

If Tfl is the retention temperature corresponding to a rate rlr and T,, 
is the retention temperature corresponding to a rate r z ,  then 

T,, - 0.5657TO 117' 

T,, - 0.5657T0 = c;) (47) 

Equation (47) gives the relation between the retention temperature and 
the linear rate of temperature rise when the inlet temperature To is kept 
constant. 

Example 2 

Repeat Part I of Example 1, using equations developed in the last 
section and based on the inverse log-linear program. 

Answer 

Either Eq. (44) or Eq. (45) can be used. 
Starting with Eq. (45) we have r = 20"C/min, To = 313"K, u1 = 

0.4343, and t,, is read from Fig. 7 so that t,, = 338 min. A H  is read on the 
outside scale and is equal to 8900 cal/mole. 

b = AH12 = 4450 

7 = alb/T0 + 1 = 7.175 

= 0.147 
r 20 a 2 = - - - -  - 

alTo 0.4343 x 313 

Substituting these values in Eq. (45), one gets 
T, = 313 x 0.5657 + 0.4343 x 313[338 x 0.147 x 7.175 + 1]1/7"7s 

= 486°K 

Which is the same value obtained in Example 1 ,  and therefore 

486 - 313 
20 = 8.65 min t =  P 
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APPLICATION TO HOMOLOGOUS SERIES 

Equation (45) can be used to develop useful relations for temperature 
programming of homologous series. Since for such series 

t r , ,o  = trl,,a"0-l 

on substituting in Eq. (45) one gets 

where 

and 

(50) 
AHn AH1 + (n - l ) B  b n = - =  - 
R R 

1 6 7  8 9 10 11 12 13 14 
1 

r =  0.1 t / m i n  

1 2  3 4 5 6 7 8 

I I u 
25 50 75 100 125 

Retention Temp. T;: 

Fig. 9. Plot of n vs retention temperature T,. 
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For simplicity, Eq. (48) may be written as 

55 

(51) 

Equation (48) was solved for the following values. 

A H ,  = 6000 cal/mole, T,.,,, = 1 min 

B = 500 cal/mole, a0 = 1.8 

and for values of r from,0.001 up to SO"C/min. 
Figure 9 is a plot of n vs retention temperature Tf, and Fig. 10 is a plot 

of n vs retention time relative to Component 6. The plots were drawn for 
four different rates of temperature rise. 

As can be seen from Fig. 9 and 10, the higher the linear rate r ,  the smaller 
the carbon number n at which the spacings become even. The spacings 
become even when the term Ky, in Eq. (51) becomes much larger than 1. 
At a high rate of temperature rise, this condition is reached with a small 
value of n, while at a small rate the value of n must increase to a certain 
value before the same condition is reached. 

1 2 3 4 5 6 
1 

r = 10  OC/min 

1 2 3 4 5 6 
1 1 

r =50'C/min 

0 2 4 6 .0 10 

relative t i m e  

FIG. 10. Plot of n vs retention time for Component 6. 
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PROOF OF T H E  CONSTANCY OF ATf DURING HOMOL- 
OGOUS SERIES TEMPERATURE PROGRAMMING 

It is possible to prove mathematically that when the value of Ky, is 
large enough, the components of a homologous series emerge evenly 
spaced. This can be accomplished with reference to Fig. 11. 

Figure 1 1  gives the distribution of the components of a homologous 
series along the column. Figures 1 l(a), 1 1 (b), and 1 l(c) give the distribu- 
tion when components n, n + 1, and n + 2 are at the column outlet, 
respectively. If the relative volatility CI was not a function of temperature, 
then Figs. Il(a), Il(b), and Il(c) would be identical except that each 
component r would be replaced by component r + 1 in the following 
figure. Since c( is a function of temperature and usually decreases as the 
temperature increases, and also since the difference in temperature between 
consecutive figures is small (about ISOC), then the distances will be very 
slightly displaced (by about 2 to 3 "/;',) as we go from one figure to the next. 

We let x ,  be the fraction covered by component n + 1 at temperature 
T,, when r? is at the column outlet and x2  be the fraction covered by 
component n + 2 when n + 1 is at the outlet. According to Eq. ( l l) ,  
a rate equal to x,r would elute component n i- 1 at temperature T,. 

Applying Eq. (47), one finds 

Similarly 

nt5 n+4 n+2 

FIG. 11. Distribution of the components of a hclmologous series along the 
column. 
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Dividing Eq. (52) by Eq. (53) gives an equation which leads to the 
relation 

T n + l  - Tn = Tn+2 - T n + ,  (54) 

This is because x I / x z  is a fraction close to 1 (about 0.97 or 0.98) and 
yn+ and y n t 2  are two large numbers, the ratio of which is also close to 1. 
Furthermore, the geometric average of two values whose ratio does not 
differ much from 1 is practically equal to their arithmetic average. 

Equation (54) expresses the fact that, during temperature programming, 
the members of a homologous series (above a certain carbon number 
which is a function of the rate r )  emerge from a chromatographic column 
evenly spaced. The details of the derivation of Eq. (54) are given later in 
Example 4. 

A SIMPLE QLJALITATIVE PROOF 
OF THE CONSTANCY OF AT,. 

Since the retention temperatures in Figs. Il(a) and Il(b) differ by 
something like 15"C, it can be shown that the significant temperatures 
corresponding to these two figures will also differ by approximately 15 "C. 
Applying Eq. (15), one can show that a decreases by about 2 % in a 15°C 
span. The assumption, therefore, that Figs. 1 I(a) and 1 l(b) are identical 
is a reasonable assumption, so that 

X n + l  = X n  (55 )  

We know also that in the case of homologous series and for a fixed 
vapor pressure (fixed isothemal retention time t,), the temperature differ- 
ence between consecutive members is about the same. This may be 
expressed mathematically as 

(g)p = constant 

or 

(g)tr = constant 

As an example, in the case of the paraffin hydrocarbon series, at a 
vapor pressure equal to 100 mm Hg, the corresponding temperatures are 
as shown in Table 6 (7). 
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TABLE 6 

Carbon no. n 6 7 8 9 10 
Temperature T ("C) 15.8 41.3 65.7 88.1 108.6 
AT ("C) 25.5 24.4 22.4 20.5 

Assumptions (55) and (56b) are sufficient to prove that consecutive 
members should come out evenly spaced after a certain carbon number 
n,. The reasoning goes as follows. 

At the start of the chromatographic run the second component comes 
out too soon, having a vapor pressure less than that of Component I 
when it was at the outlet. Peak 2 will be broader than Peak 1. The same 
will also happen when Peak 3 comes out. Peak 3 will be wider than Peak 
2 and the second spacing between Peaks 2 and 3 will be greater than that 
between Peaks I and 2. This will continue until the spacing is big enough 
to satisfy Eq. (56b). In this case Component n + 1 emerges at  the same 
vapor pressure as component n and with the same width. Once this 
occurs the spacings will continue to  be equal and consecutive members 
are eluted evenly spaced. If we assume that a spacmg was greater than the 
one before it, this would mean that the same distance was covered in a 
longer time at a higher average velocity, which is impossible. Similarly, 
if we assume that a spacing is smaller than the one before it, this would 
mean that the same distance was covered in a shorter time at a smaller 
average velocity, which is also impossible. Therefore, all the spacings 
should be equal. Slight differences in the magnitudes of the spacings are 
due to slight inaccuracies in Assumptions (55 )  and (56). 

M A G N I T U D E  OF T H E  TEMPERATURE DIFFERENCE AT, 
FOR A H O M O L O G O U S  SERIES 

The retention temperature difference ATfn for a homologous series 
may be calculated from 

and then, by substituting in Eq. (48), a relation is obtained for ATm 

with Eq. (56b) written in terms of the constant spacing, so that 
An alternative derivation, which leads to a simpler relation is to start 

AT - ("> 
f - an tr 
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For a homologous series. Eq. (6) gives the relation between t,, n, and 
T. Since 

Then by partial differentiation of Eq. (6), once with respect to n and once 
with respect to T, one can show that 

(60) 
T2"lT) - (l/TO)l + R In %I 

AHn 
ATr, = 

RELATION BETWEEN n, AND r 

For a homologous series the carbon number n, at which the spacings 
start to be equal during temperature programming is a function of the 
rate of linear temperature rise r ;  the higher the value of r, the lower the 
value of n, and vice versa. 

To deduce a mathematical relation between n, and Y, we make use of 
the fact that in Eq. (51), n approaches n, as (Ky, + 1 ) l i y n  approaches 
(Ky,)"yn. If Z is equal to the ratio (Kyn)'Iyn/(Ky, + l)l/yn, then we can 
assign to 2 a value close to 1, say Z = 0.98, and n, would be the value of 
n which satisfies the equation 

This will lead to some mathematical difficulties. An alternative and 
much simpler approach may be followed at  a little loss in accuracy by 
assuming a constant and reasonable value of K. For example, we may 
assume a value of K = In 10 = 2.3 = l/al. This leads to 

This condition gives a value of n very close to n, because the corre- 
sponding value of Z in Eq. (61) will vary from 0.98 to 0.995 as y varies 
from 5 to 10, which shows that Eq. (62), in spite of its simplicity, is quite 
satisfactory. 

Equation (62) leads to the relation 

n, = C, + C,, lnr  (63) 
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where 

SAID 

and 

Example 3 

For the homologous series in Fig. 4, and for a linear rate of temperature 
rise equal to (a) 3"C/min or (b) 0.01 "Cimin, calculate for To = 20°C: 

1. n, 
2. 
3. 

The temperature and time from the start corresponding to n, 
The value of the temperature spacing between consecutive members 
at n, 

Answer 

At 20°C, t,,,, = 2 min, and a. = 1.8, with r == 3"C/min: 

I .  The carbon number at the start of constant spacing is calculated 
from Eq. (63) so that 

n, = C, + C,, In r 

ln(293/2) 1 
x I n 3  = 7.61 _ _ _ _  = I +  In 1.8 In 1.8 

2. The temperature corresponding to n, is calculated from Eq. (48), 
where a, = 0.4343, To = 293, r = 3, rr,,o = 2, a = 1.8, n - 1 
= 7.61- 1 = 6.61, 

Y" = 

Substituting in Eq. (48), one gets 

0.4343(6000 + 6.61 x 500) 
1.987 x 293 + 1 = 7.94 

111.94 

+ 

3 x 2 x 1.86 .61  x 7.94 ( 0.4343 x 293 Tfn = 0.5657 x 293 + 0.4343 x 293 

= 350.4"K = 77.4"C 

and the time from the start is (77.4 - 20)/3 = 113.1 min. 
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3. 

First method: 

The value of the temperature increment at n, can be calculated by 
two methods. 

ATsn, = Tr,,+, - Tfn,  
TI,, = 350.4"C 

T f n e + ,  is also calculated from Eq. (48). In this case n - 1 = 6.61 + 1 = 
7.61 

+ 1 = 8.31 0.4343(6000 + 7.61 x 500) 
1.987 x 293 Y n + l  = 

Substituting in Eq. (48), one gets 

T f H e + ,  = 361.2 and ATfme = 10.8"C 

Second method: ATfne can also be calculated by substituting in Eq. 
(60). In this case 

ATm. = 
350.42[500{(1/350.4) - (1/293)} + 1.987 In 1.81 

6000 + 6.61 x 500 

= 11.7"C 

At 20°C, t ,  = 2 min, and a0 = 1.8, with r = 0.01 "C/min. 

x ln(0.01) = 17.3 
In (293/2) 1 -~ n,= 1 + In 1.8 In 1.8 

2. Substituting in Eq. (48) as in Part (a), except that in this case n - 1 
= 16.3, and 

Y n  = 
0.4343(6000 + 16.3 x 500) 

1.987 x 293 + 1 = 10.56 

one gets 

Tf,, = 338.4"K = 65.4"C 

and the time from the start is (65.4 - 20)/0.01 = 4540 min. 
3. To calculate ATfne: 
First method: 
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Tfn,+l is also calculated from Eq. (48) where n - 1 = 17.3 and 

0.4343(6000 + 17.3 x 500) 
1.987 x 293 - + 1 = 10.93 Y n + t  = 

Substituting in Eq. (48), one gets 

Tfne,, = 346.3 and ATfn, = 346.3 - 338.4 = 7.9"C 

Second method: By substituting in Eq. (60) where T = 338.4 and 
AHne = 6000 + 16.3 x 500, one gets ATf,, := 7.61"C. 

Example 4 

Show that the statments upon which the: derivation of Eq. (54) was 
based are correct. 

Answer 

Dividing Eq. (52)/Eq. (53), one gets 

Since xi/xz is very close to 1, and since Y , , + ~  and Y , , + ~  are two large 
numbers whose ratio is also close to 1, it follows that the right-hand side 
is practically equal to 1. Substituting 1 far the right-hand side, T,,, 
- 0.57T0 becomes the geometric average between - 0.57T0 and 
T,, - o.57T0. The ratio of the last two values does not differ much from 1. 
In this case their geometric average is practically equal to their arithmetic 
average so that 

T,+l - 0.57To = 4[(Tn+2 - 0.57To) + (T, - 0.57TO)l 

which leads to 

T o + ,  = H T n + 2  + Tn) 

T n + ,  - T n  = Tn+, -- T n + ,  

or 

(54) 

A numerical verification of the above statements is as follows: Accord- 
ing to the definition of y given previously: 

Qib y = - + l  
TO 
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its value is very seldom less than 4, and the ratio y n + 2 / y n + l  is also very 
seldom more than 1.07. Furthermore, according to Eq. (32), the average 
relative volatility can decrease by no more than 3 % in a 15 “C span and 
also the fraction x is very seldom less than 0.5. Substituting these extreme 
values in the right-hand side of Eq. (64), one gets 

xlt /~ ,+l  0 . 5 ~ 4  

x 2 1 / Y n + 2  - 0.5 1 51/4.3 

Substituting more realistic values, we find 

= 0.98 -- 

(x1)”Yn+ ‘/(x2)’/Yn+’ = 0.61’7/0.6151’7~4 = 0.993 

Similarly, the ratio (Tn+2 - 0.57T0)/(Tn - 0.57T0) is very seldom greater 
than 1.2 and usually less than 1.14. This gives a geometric average equal 
to 1.068 compared to an arithmetic average equal to 1.070. 

Furthermore, the right-hand side is almost always less than 1, and this 
makes the deviation from the arithmetic mean even less than the difference 
between the geometric and the arithmetic means. In other words, the two 
deviations tend to cancel one another, and Eq. (54) is sufficiently accurate. 
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