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Abstract

The theory of temperature programming has been reexamined. It is shown
that a linear program leads to an explicit relation for the retention temperature
in terms of the inverse exponential integral. Numerical examples are solved
using a straight line plot of the exponential integral together with a plot based on
the equivalent temperature concept. A simple explicit expression in terms of
common functions for the retention temperature during linear temperature
programming was deduced. This was made possible using the inverse log
nonlinear program which can be made to approximate quite closely a linear
program. This expression was used to explain the constancy of intervals and
other phenomena encountered during the linear temperature programming of
homologous series.

INTRODUCTION

A rigorous treatment of temperature programming is very difficult,
and the equations derived are complicated even with a linear rate of
temperature rise. The relations developed so far for linear temperature
programming have been in terms of the not too common exponential
integral (1-3). The difficulty in handling this integral has made it hard to
explain and to give easy proofs for some of the phenomena encountered
in the case of linear temperature programming.
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Copyright © 1977 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor
any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any informa-
tion storage and retrieval system, without permission in writing from the publisher.



14:12 25 January 2011

Downl oaded At:

30 SAID

5
I N NN N

Time

FiG. 1. Typical temperature programmed run.

regardless of the rate of temperature rise, the members of a homologous
series emerge evenly spaced during linear temperature programming. It is
also an experimental fact that with a high rate of temperature rise the
spacings become even after the emergence of a small number of the first
members, and the lower the rate of temperature rise, the greater the
number of components which emerge unevenly spaced at the beginning of
the chromatographic run. Figure 1 represents a typical temperature
programmed run, The lower part of the figure is a symbolic representation
of the positions of the peak maxima.

These and other phenomena are encountered experimentally, but it
has been always difficult to give straightforward explanations or proofs.
For example, if one starts with a linear rate of temperature rise equal to
0.1°C/min or even 0.001°C/min, will the spacings ever become even and,
if so, at what carbon number and what is the magnitude of this constant
spacing? So far, the answers to such questions have not been too easy
mostly because no simple explicit relation for the retention temperature
was deduced.

Several years ago it was pointed out by this author (3) that some
nonlinear programs, such as the inverse linear and the inverse log pro-
grams, lead to analytic solutions in terms of simple and common functions.
One of these programs (the inverse linear) was developed by this author
in the same paper. Tt was also studied and developed further by Szepe (4),
who found that easy expressions are obtained even if the column-free
volume was taken into account,
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There is, however, much more interest in linear temperature program-
ming because it is easier to make instruments with linear programs.
Furthermore, a nonlinear program can be approximated by a series of
linear programs having different slopes.

Further investigations of the different nonlinear programs by this author
showed that the inverse log program can be made to approximate quite
closely a linear program over a large span of temperature rise. This made
it possible to deduce easy and explicit relations for linear temperature
programming, particularly for the retention temperature, and it was
therefore easy to explain qualitatively as well as quantitatively many of
the experimental findings.

ASSUMPTIONS MADE

It was necessary, however, to make some simplifying assumptions in
order to avoid mathematical complications. The main assumptions made
in the course of this treatment follow.

Assumption |

di
L

| &

ey

S

r

This is the fundamental differential equation. It means that at any
point in the column shown in Fig. 2, the differential fractional length
traversed is equal to the differential fractional time with respect to the
isothermal retention time at the corresponding temperature. This equation
is exact in the case of incompressible eluents. It also leads to correct
answers in the case of compressible fluids whether it is a constant pressure
or constant flow operation. This was shown to be true by this author and
co-workers several years ago (5) as long as the integration is performed
over the total column length, in which case the pressure effect cancels out.
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F1G. 2. Schematic of the column used for making assumptions,
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Assumption I1

t, = ae"'T )

Equation (2) means that the isothermal retention time ¢, vs the tempera-
ture is a straight line on log-reciprocal chart paper as shown in Fig. 3A,
where a and b are constants. This equation applies better to the net reten-
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Fic. 3A. Log-reciprocal chart for Eq. (2).
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tion time, but here we assume that it also applies to the uncorrected
retention time and that the heat of solution AH is constant, b = AH/R.
The usefulness of the chart is increased by introducing an outside scale
on which AH is read at the point where a parallel line from the origin
meets the scale. This is accomplished easily with the help of a transparent
sheet on which a large number of parallel lines arz drawn at small distances
from each other (Fig. 3B). For convenience, the abscissa in Fig. 3A

. \

FiG. 3B. Overlay for Fig. 3A.
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It is a well-known fact that except for the first few compounds and
For homologous series the following two assumptions are also made:

and

AH, = AH,_, + B

tr,n = tr,n- 1OC

3

Q)

For a homologous series, B is not a function of temperature or the

carbon number », while « is a function of temperature but not of #.

From the above equations one deduces the following relation for a

AH Kcal/mol

Fic. 4. Plot of Eq. (6).
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homologous series:

b b
o= g esp 72 = 72) ©)
0

or

AH -1 AH -1
ly = by 20" exp[ ' +R(;I“ % _ : +R(;0 )ﬂ:l 6)

Figure 4 is a plot of Eq. (6) on Fig. 3 where ¢,, , = 2 min, a, = 1.8 at
20°C, AH, = 6000 cal/mole, and § = 500 cal/mole.

DEVELOPMENT OF THE FUNDAMENTAL
RELATION FOR A LINEAR PROGRAM

For a linear program
T=T,+rt )

where r is the linear rate of temperature rise and ¢ is the time.
Substituting from Egs. (2) and (7) into Eq. (1) and integrating over the
whole column length between inlet temperature 7, and outlet temperature
T,, one gets
ra

o ="P(hy) — ¥(ho) ®

where
a=te "
t, is the retention time corresponding to temperature 7, b = AH/R, and

Ly b _AH
T T RT

Y(h) is the exponential integral defined by the relation
¥ = | @) e )
h

This integral is tabulated in many references and is plotted in Fig. §
for values of A of chromatographic interest; namely, from 4 = 6 to
h = 17. The ordinate is a multicycle log scale, and the scale of the abscissa
is calculated according to a derived function in order to give a straight-line
plot.
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FiG. 5. Plot of Eq. (9) for values of h.
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If in deriving Eq. (8) the integration was performsad over a fraction x of
the column between temperatures T, and T, instead of the total column
length, one gets

xralb = W(h,) — ¥(hy) (10)

When 4, and 4, are fixed, Eq. (10) leads to
Xa[Xy = ryfry 089)

Which means that, between two fixed temperatures on the column
length, the fraction of column covered by a component is inversely propor-
tional to the rate of temperature rise.

This is an important relation. It is correct for incompressible eluents
and should be used with some care in the case of compressible fluids
because the pressure effect cancels out only over the total length of the
column and not over a fraction of the column length.

AN EXPLICIT RELATION FOR THE
RETENTION TEMPERATURE T

An explicit relation for T, can be easily deduced from Eq. (8) which
gives

W) =5 + ¥lho) (12)
therefore
hy = \il-l[fbi’ + \P(ho)] (13)

The symbol ™! represents the inverse of the exponential integral as
much as the log function is the inverse of the exponential function. A
table of the inverse exponential integral can be prepared from existing
tables of the exponential integral. A graph of the inverse function may be
prepared from that of the original function simply by making the ordinate
an abscissa and vice versa. Since A, = b/T,, one gets a direct relation for
T, in terms of the inverse exponential function:

b
T = ¥ i) + $(hg)]

Although Eq. (14) is a direct or explicit relation of the retention tempera-
ture T, it is in terms of an uncommon function, namely, the inverse

(14)
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exponential integral function, and this restricts the use of Eq. (14). An
explicit relation of T, in terms of common and easy functions will be
developed later in this paper.

THE EFFECT OF TEMPERATURE ON
THE RELATIVE VOLATILITY

Assuming that

b2 = b1 + B
then
o = i = t'z,o eXp [(bZ/T) - (bl/TO)]
t’l t"l,o [CXp (bl/T) - (bl/To)]
so that
= Soexp <ET - T%) (15)

THE EQUIVALENT TEMPERATURE CONCEPT

The equivalent temperature concept was first introduced by this author
(3). The equivalent temperature T, is defined as the temperature at which
the isothermal retention time is equal to the programmed retention time
t, between inlet and outlet temperatures 7, and 7, respectively.

In temperature programming calculations, one is usually interested in
one of the following:

(a) Given the final temperature T, what is r or ¢,?
(b) Given r, whatis 7, or ¢,?
() Given t,, whatis r or T,?

In all cases T, is also given. A plot of 7, vs T on log-reciprocal graph
paper for the component under consideration should be available, or the
data necessary to prepare the plot such as, for example, two isothermal
retention times at two different temperatures.

Case (a) and Case (b) are solved directly using Eqs. (8) and (14), while
Case (c¢) can be solved only by trial and error. It is possible to plot Eq. (8)
in such a way that trial and error will not be needed for Case {c), but a
much easier approach would be via the equivalent temperature concept.
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In this case the constant a in Eq. (8) is given by
a = t,exp (—b/T,)
and

T To 9
tl’
Substituting in Eq. (8), one gets
Y(b/T,) — Y(b/Ty) an
(T; — To)/b

exp (—b/T,) =

A plot of Eq. (17) would be useful in calculating the linear rate needed
to elute a component in a given time. One may plot b/T, vs b/T, with
b/T, as the parameter. A more useful chart which can be conveniently
used in solving Case (c) is prepared as follows.

Fixing ®, in Eq. (17) at 20°C, Eq. (17) is solved and a table is prepared
in which @, is tabulated for different values of ®, with AH as the parame-
ter (Table 1). @,, O, and ©, are the inlet, outlet, and equivalent tempera-
tures, respectively, in °C. Figure 6 is then drawn in which @, — 0, is
plotted vs ®, — 20 with AH as the parameter. One can show that Fig. 6
can be used to solve Case (c) regardless of the starting temperature. It is,
in fact, a plot of (@, — ©,)" vs (@, — ®,)" with AH’ as the parameter
where '

, 273 + 20
(©, - 0,) = (0, — Q)m = (0, — 0,)f
Similarly,
, 273 + 20
(O, — 0y = (9, — ®o)2—7§+—®0 = (0, — Oy)f
and
, 273 + 20
AH' = AH273—+90 = AH x f

If, in preparing Table 1, the starting temperature was fixed at any O,
instead of 20°C, it should lead to the same result. In this case

213+ 6,
f—273+®0
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TABLE 1
o,

O AH=S5 6 7 8 9 10 11 12 15
30 25.1 25t 251 252 252 252 252 253 253
40 30.3 30.4 305 306 307 308 309 310 312
50 35.7 359  36.1 363 365 367 369 371 376
60 41.3 41.6 419 423 426 429 432 435 443
70 46.9 474 479 484 488 493 497 501 513
80 52.6 533 540 546 552 558 s64 57.0 585
90 58.4 593 602 61.0 618 625 632 639 639
100 64.3 654 664 674 684 693 702 71.0 733
110 70.2 715 728 740 751 762 772 782 808
120 76.2 777 792 806 819 831 843 B854 884
130 82.2 839 856 872 88.7 901 914 927 959
140 88.2 90.2 921 939 956 971 986 100.0 103.6
150 94.2 96.5 986 100.6 1025 1042 1058 107.3 111.2
160 100.3 102.8 1052 107.3 1094 111.2 113.0 1146 1188
170 106.4 109.1 1117 1141 1163 118.3 1202 1219 1264
180 1124 1155 118.3 120.8 1232 {254 1274 1293 1341
190 118.5 121.8 1248 127.6 130.1 1325 1346 136.6 1417
200 124.6 128.1 1314 1343 137.0 1395 141.8 1439 1493
210 130.7 134.5 1379 141.1 1439 146.6 149.0 151.2 1569
220 136.8 140.8 1445 147.8 150.8 153.6 1562 158.5 164.5
230 142.8 147.1 150.0 154.5 157.7 160.7 1633 165.8 172.1
240 148.9 1534 1575 161.2 164.6 1677 1705 173.1 179.6
250 154.9 159.7 1640 1679 171.5 1747 177.6 180.3 187.2
260 170.0 166.0 170.5 174.6 178.3 181.7 184.8 187.6 194.7
270 167.0 1723 177.0 181.3 1852 188.7 1919 1948 202.2
280 173.0 178.6 183.5 188.0 192.0 1957 199.0 202.0 209.7
290 179.0 184.8 190.0 194.6 1988 202.6 2060 2092 2172
300 185.0 191.0 1964 201.3 205.6 209.5 213.1 2164 224.6
310 191.0 197.3 2029 2079 2124 2165 220.1 2235 232.1
320 197.0 203.5 209.3 2145 2191 2234 2272 2307 2395
330 202.9 209.7 2157 221.0 2259 2302 2342 237.8 2469
340 208.9 2159 2221 227.6 232.6 23701 2412 2449 2543
350 214.8 222.0 2284 2342 2393 2439 2481 252.0 26l1.6
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(6, - 0,)
Fi1G. 6. Solution of Case (c).
Example 1

I. Starting from 40°C at a rate of 20°C/min, how long will it take to
elute Component A in Fig. 7 and what is the outlet temperature ?
II. What is the linear rate needed to elute Component A in 6 min starting

from 50°C?
Answer
1. From Fig. 7,
AH = 8900 cal/mole
t, = 33 min at 100°C
therefore

b = AHJ2 = 8900/2 = 4450

33 = ae4450/373
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FiG. 7. Elution of Component A.
therefore
a=217 x 107¢
4450
hy = 33 = 14.22
Y(he) = 2.7 x 107°  (from Fig. 5)
20 x 2.17 x 1074
— -9 —
Why) = 2.7 x 1077 + 4450 = 915

hy =9.15 (from Fig. 5)

SAID
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therefore
T, = 486°K
and

486 — 313
tp = ——20—‘— = 8.65 min

I1. To avoid trial and error, Fig. 6 is used.
0, = 162°C (from Fig. 7)
0, — O, =162 — 50 = 112°C

, 293 .
(O, — @) = 112353 = 101.6°C
, 293
AH' = 8.9 357 = 8.07

From Fig. 6,
(0, - ®,) =57°C
323

®, — O, = 5755 = 62.8°C
@, — ®, = 112 + 62.8 = 174.8°C
r = 174.8/6
= 29.5°C/min

APPROXIMATING THE EXPONENTIAL INTEGRAL

The following approximation of the exponential integral for values of
chromatographic interest was given by Giddings (1).

Approximation |

e—-h

¥ = G 0857 (18)

Following a systematic approach, a better approximation was deduced
by this author (6) as follows.
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Approximation I

4e~h

YO = G e T @

Another convenient approximation which is a little less accurate than
Approximation II was also deduced by this author (6) as follows.

Approximation 111

e—h

YO =719 (20)

This approximation is only slightly better than Approximation I, but

it is sometimes more convenient to handle it analytically as will be seen

later in deducing the average relative volatility during a temperature
programmed run.

A comparison between the three approximations is given in Table 2.

MIDCOLUMN AND FRACTIONAL LENGTH
TEMPERATURE

Even though the difference between inlet and outlet temperatures may
be quite large, the temperature difference from the time the component
reaches half the column and the time it reaches the column outlet is
relatively small, being of the order of 20°C. If 4, is the value of 4 when

TABLE 2

Wk

h  Exact value Approximation I  Approximation Il  Approximation ITI

5 2.00 x 10™#4 1.97 x 104 2.00 x 10~ 1.98 x 1074
6 5.30 x 10-3 5.28 x 10-% 5.30 x 10-° 5.30 x 10~*%
7 148 x 10-5 1.48 x 10-5 1.48 x 10-°% 1.48 x 10~%
8 4.26 x 1078 428 x 10-¢ 4.26 x 10-¢ 428 x 10-8
9 1.26 x 10¢ 1.27 x 10~-% 1.26 x 109 1.27 x 10~
10 3.83 x 1077 3.86 x 10-7 3.82 x 1077 3.85 x 1077
11 1,18 x 1077 1.19 x 10~7 1.18 x 1077 1.19 x 1077
12 3.69 x 10-8 3.72 x 10~8 3.68 x 10-8 3.71 x 1078
15 1.21 x 107° 1.22 x 10-° 1.21 % 10-° 1.21 x 10-%
20 4.70 x 10-12 4.74 x 10-12 4,70 x 10-12 473 x 10712
25 2.06 x 10-14 2.08 x 10— 2.06 x 1014 2.07 x 10~
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the component is at fraction x of the column length and if W(A,) can be
neglected in comparison with W(#,) and ‘P(#,), which is generally the case
when 7, — T, is more than 80°C and x is bigger than 0.3, then from Eq.
(8) one deduces that

x = Y(h)[¥(hy) 1)

From the tables of the exponential integral or from Fig. 5, it is possible
to prepare a table which lists the values of A, — A, corresponding to
different values of x with A, as the parameter.

The value of 4, — h, may be calculated analytically as follows: Starting
with Eq. (20) (Approximation III) for the exponential integral, one gets

Wy k4 18)
T,y T P (= = h) 3 G 18)

let
(hy —hp) =y
Substituting in the above equation, we find
- Y _r
—Inx=y+1In <1 +h,><1 +hf+ 1.8) (22)

Since y is small compared to 4 and since In (1 + g) = g when g is a small
fraction, Eq. (22) reduces to

1 1
—1nX=y<1 +—+———>
he  hy + 1.8
or

In x
1+ (1/hy) + 1j(h, + 1.8)
(h, — hy) was calculated for different values of x when 4, is equal to

6 and 12. The values obtained are tabulated in Table 3. (k. — A/),, in
the table is the arithmetic average of the two values at 6 and 12.

h, — hy = 23)

AVERAGE RELATIVE VOLATILITY AND
THE SIGNIFICANT TEMPERATURE

During temperature programming the relative volatility between two
components changes continuously as the components move along the
column. The relative volatility usually decreases as the temperature
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TABLE 3
hy — hy
Fraction x hy =26 hy =12 (hy — hplay

0.3 0.93 1.05 0.99
0.4 0.71 0.80 0.75
0.5 0.54 0.60 0.57
0.6 0.40 0.44 0.42
0.7 0.28 0.31 0.29
0.8 0.17 0.19 0.18
0.9 0.08 0.09 0.09

increases. In the case of isothermal chromatography and if we neglect
the pressure effect when the eluent is compressible, the relative volatility
will be given by the ratio of the two distances traveled by the two compo-
nents along the column. It is also given by the ratio of the two retention
times. During temperature programming, however, the ratio between the
two distances traveled along the column up to any temperature 7 will
have a value somewhere between the relative volatility at 7 and that at
the initial temperature 7. This ratio is called the average relative volatility
and is equal to the isothermal relative volatility at a temperature T’
which is called the significant temperature between 7, and 7. The signifi-
cant temperature concept does not apply directly to the average relative
volatility obtained from retention times in a temperature programmed run
because in this case the two components have been subjected to different
average temperatures. It applies only to the case of intrinsic resolution
where the relative volatility is quite close to 1, in which case the two
components have been subjected to the same temperature all the time.

In order to derive the equation from which o, during a temperature
programmed run can be calculated, we start by deducing the fundamental
differential equation. We assume that during a temperature programmed
run when the temperature of the column was equal to 7, Components 1
and 2 were at distances /, and /,, respectively, and that during a differential
increment of time df, Component 1 traveled a distance d/, while Compo-
nent 2 traveled a distance dl,, then dl,/dl, = «, where « is the isothermal
relative volatility at temperature 7.

By definition, o,, up to temperature 7} is equal to L,/L,, where 17 is
the temperature when Component | has traveled a length of column equal
to L, and Component 2 has traveled a length equal to L,. Therefore

oL _fgd L
VoL, fedh [§(d ]

24)
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or

L1 [hd,
Cxav_-]‘l o &

Substituting from the fundamental relations

di/L = dift, and o = t,/t,

1 j‘l’l dt
Ay 0 trz

where ¢,, is the programmed retention time for Component 1 but

one gets

t,, = ay exp (by/T)

1 bl gt
Aoy B raZ[T<TI1) B \P<TO>}

For Component 1, according to Eq. (8) we have
b, b, b,
=) -z

b, = AH,/R

Therefore

where

and

b, = AH,/R

47

25)

(26)

@D

28)

from Egs. (27) and (28), and neglecting ¥(,) in comparison with ¥(#,),

one gets

L b ¥ T,)

o byay W(by[Ty,)

for simplicity we denote b,/T;, by y,, b,/T;, by y,, and
by =0b,+p

Substituting in Eq. (29) leads to

Yy,
Uy = a()jj_;exp (_ﬁ/TO)rI/%Zi

(29
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Applying Approximation I for the exponential integral where
e_y

¥Y(y) = ———r—r-

») y(y + 1.8)

gives

e‘y‘<y2 + 1.8
Ay =

%o\ 3 ¥ 1.8

%memm (30)

Since 1 + x = ¢* for a small value of x, then Eq. (30) leads to

B I B
O, = O CXD{T}<1 + —.———(bl/RTf‘) T ﬁ) - —f;] (31)

Comparison with the equation which follows from the definition of the
significant temperature, namely

%y = Uo EXP <—T€ - Tﬁ) (32)
0

leads to

hp + 1.8> (33)

= Tf‘(hf1 + 2.8

This result may be compared with the Giddings’ relation for the signifi-
cant temperature:

’ hfl
= Tf1<h,, n O.85> (34)
Both Eq. (33) and the Giddings’ equation give results which are suffi-
ciently close to each other. Equation (34) can be rearranged to give
h' = h; + 0.85 (35)

For comparison with the Giddings’ formula, Eq. (33) is rearranged in
the form

‘ hy
r - 1,(2) (36)
This equation leads to

Tis a function of &, whereas in the case of Eq. (35) it is a constant equal
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TABLE 4
hy 6 7 8 9 10 11 12
I 077 080 082 084 085 086 087

to 0.85. By equating Eqs. (33) and (36), it can be shown that
_
hy + 1.8
Table 4 lists the values of I corresponding to different values of 4.
One can see from Table 4 that the average value of I for values of &,

from 6 to 12 is equal to 0.82, while the average is equal to the Giddings’
value 0.85 for values of A from 8 to 12.

I (37

RELATION BETWEEN /' AND /,

By comparing the values listed in Table 4 for the significant temperature
with those listed in Table 3 for 4, — h;, where A, is the value of 4 at
fractional length x, it is evident that the significant temperature is the
temperature at a fraction equal to 0.37 of the column length. This conclu-
sion is still subject to the condition that the difference between T, and 7',
is large enough to make ¥(#,) very small in comparision with W(#/).

NONLINEAR PROGRAMS

As pointed out by this author (3), certain nonlinear programs lead to
simple analytic expressions. Examples of such programs are:

1. The inverse linear program

T,
T = — (38)
2. The inverse square root program
7,
T = T—e 77 NG 39)
3. The inverse log program
T
T 0 (40)

1= a; log (1 + a,t)

¢y, €3, @y, and a, are constants.
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The inverse linear program gives a progressively increasing rate of
temperature rise, and the inverse square root program gives a progressively
decreasing rate of temperature rise, while the inverse log program gives
a progressively increasing rate or a progressively decreasing rate depending
on the values of the constants ¢} and a,. The interest in this work is in
the inverse log program because it can be made to replace a linear program
for the purpose of easy computations.

THE INVERSE LOG PROGRAM

The inverse log program, as represented by Eq. (40), can be made to
approximate quite closely a linear temperature program over a large span
of temperature rise. In this case it can be demonstrated that the constant
a’ has a value close to 1 and, for simplicity, it is taken equal to 1 with little
loss in accuracy, and Eq. (40) becomes

Ty To

= Ties0 v @) T—and T a0

(41)

where
a, = In;p e = 0.4343

a, Is a function of the linear rate. The relation between a, and r is deduced
by differentiating Eq. (41) with respect to r and equating {d77/dt),-, to the
constant rate r. This leads to the relation

a, = rla, T (42)

Figure 8 is a plot of the three nonlinear programs (Egs. 38—40) between
To = 50°C and T, = 200°C. The linear program is also shown for
comparison. As can be seen from Fig. &, the linear and inverse log pro-
grams are almost identical; the maximum deviation from one another
being less than 1°C as can be seen from Table 5

In plotting Fig. 8, the value of @, can be obtained by two different
methods:

1. An exact method where T, and 7', are both known. Substituting in
Eq. (41) gives the product a,t,. If the linear rate is assumed to be
10°C/min, then ¢, is equal to (200 — 50)/10 = 15 min. This gives a
value of a, = 0.0717.

2. An approximate method using Eq. (42). This gives

r 10
27 4T, 0.4343 x 323

a = 0.0713
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200
I Linear
IT Inv Lin
IT Inv. Sq.R.
I¥ Inv. Log.
150
oL
Q
£ /
[})
[
100
5
0 0 5 10 15
Time mins
Fic. 8. Plot of three nonlinear programs.
TABLE 5
Time Tllncar T]nv log Deviation
(min) °C) ) o)
0 50 50 0.0
1 60 60 0.0
2 70 70 0.0
3 80 79.9 —-0.1
4 90 89.7 -0.3
5 100 99.6 —0.4
6 110 109.4 —0.6
7 120 119.3 —0.7
8 130 129.2 —0.8
9 140 139.1 —0.9
10 150 149.1 —0.9
11 160 159.1 —0.9
12 170 169.2 —0.8
13 180 179.4 —0.6
14 190 189.7 —0.3
15 200 200 0.0
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As can be seen, the two values of @, are very close and this indicates that
Eq. (42) is quite adequate.

DEVELOPMENT OF THE EXPLICIT RELATION FOR 7,
IN TERMS OF COMMON FUNCTIONS

Substituting Eqs. (41) and (2) into Eq. (1) and integrating from ¢t = 0
to t = t,, one gets

‘p dt
=1
J‘o aexp {(b/Ty)ll — a,In(l + a1}
Simplifying, one gets

1 e a1b/To
aeb/To o (1 + azt) dt - 1
which leads to

b
aztro<a_l‘“ + 1> =1+ azzp)(alb/To)+l -1

TO
Let
ab _
7, + 1=y
then
1
t, = ‘Z[(fmazv + DY — 1] (43)
Since
T, - T
S " *0
t, ==
and
a, = rla,T,

by substituting in Eq. (43), one gets

T =T 4 v 44
= 0+01T0 tro;;]TO-+1 —1 ( )

or

rty, 1
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Either Eq. (44) or Eq. (45) is an explicit relation for the retention
temperature T, in terms of simple common functions.

When the term (r1, /a,T,) is large due to a large rate of temperature
rise or a large isothermal retention time at T, or both, and because y is
a large number which may vary from 4 to 10 or more, then the Term 1
may be neglected relative to (rt,,/a; T,)y and we get

rt, 1/y
T, =(1 —a)Ty + a1T0<Z]0707> (46)

If T, is the retention temperature corresponding to a rate ry, and T,
is the retention temperature corresponding to a rate r,, then
T, — 0.5657T, _ (ﬁ)“y
T,, — 0.5657T,
Equation (47) gives the relation between the retention temperature and

the linear rate of temperature rise when the inlet temperature T, is kept
constant.

47

Fa

Example 2

Repeat Part I of Example 1, using equations developed in the last
section and based on the inverse log-linear program.

Answer

Either Eq. (44) or Eq. (45) can be used.

Starting with Eq. (45) we have r = 20°C/min, T, = 313°K, q, =
0.4343, and ¢,  is read from Fig. 7 so that t,, = 338 min. AH is read on the
outside scale and is equal to 8900 cal/mole.

b = AH/2 = 4450
Yy =ab/Ty + 1 =17.175
r 20

= 4T, 04343 x 313~ 04

a;

Substituting these values in Eq. (45), one gets
T, = 313 x 0.5657 + 0.4343 x 313[338 x 0.147 x 7.175 + 1)*/7:175
= 486°K
Which is the same value obtained in Example 1, and therefore

486 — 313 .
t, = g = 8.65 min
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Equation (45) can be used to develop useful relations for temperature

programming of homologous series. Since for such series

-1
o = ry o%0

n,0

on substituting in Eq. (45) one gets

rty, 1
Tf,. = (1 bt al)TO + alT0<—a'"].._' y}l + 1) (48)
140
where
Vo = (@0,/To) + 1 49)
and
AH, AH,+ (n—1)B
b= =—=x% — (30)
167 8 9 10 1 12 13 14 1% 16 17
| R IR B 1 1 1 L
r= 01 ¢/min
134 5 [ 7 8 g 10 11 12
i1 1 ! 1 | | |
r= ‘t/mm
1 2 3 4 5 6 7 8
N | | | | 1
r=10 C/min
1 2 3 4 5
l | 1 | ] |
r= 50 C/min
| | 1 | |
25 50 75 100 125

Retention Temp. T; c

Fig. 9. Plot of n vs retention temperature Ty,
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For simplicity, Eq. (48) may be written as
Ty, = (1 — a)To + &, To(Ky, + DY/ (51)
Equation (48) was solved for the following values.
AH,; = 6000 cal/mole, 7, , = 1 min
B = 500 cal/mole, oy = 1.8

and for values of » from0.00! up to 50°C/min.

Figure 9 is a plot of n vs retention temperature T, and Fig. 10 is a plot
of n vs retention time relative to Component 6. The plots were drawn for
four different rates of temperature rise.

As can be seen from Fig. 9 and 10, the higher the linear rate r, the smaller
the carbon number n at which the spacings become even. The spacings
become even when the term Ky, in Eq. (51) becomes much larger than 1.
At a high rate of temperature rise, this condition is reached with a small
value of n, while at a small rate the value of #» must increase to a certain
value before the same condition is reached.

12 3 4 5 6
Pl ! | !
r =o0.1C/min
1 2 3 4 5 6
| | | | 1
r =1 °C/min

1 2 3 4 5 6
| | I | ] J
r =10 C/min
1 2 3 4 5 3
1 ! | 1 | J
r =50 C/min
| 1 L L ! |
0 2 4 6 8 10

relative time

FiG. 10. Plot of » vs retention time for Component 6,
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PROOF OF THE CONSTANCY OF AT, DURING HOMOL-
OGOUS SERIES TEMPERATURE PROGRAMMING

It is possible to prove mathematically that when the value of Ky, is
large enough, the components of a homologous series emerge evenly
spaced. This can be accomplished with reference to Fig. 11.

Figure 11 gives the distribution of the components of a homologous
series along the column. Figures 11(a), 11(b), and 11(c) give the distribu-
tion when components n, n + 1, and n + 2 are at the column outlet,
respectively. If the relative volatility & was not a function of temperature,
then Figs. 11(a), 11(b), and 11(c) would be identical except that each
component r would be replaced by component » 4+ | in the following
figure. Since « is a function of temperature and usually decreases as the
temperature increases, and also since the difference in temperature between
consecutive figures is small (about 15°C), then: the distances will be very
slightly displaced (by about 2 to 3 %) as we go from one figure to the next.

We let x, be the fraction covered by component » + 1 at temperature
T, when »n is at the column outlet and x, be the fraction covered by
component # + 2 when # 4+ 1 is at the outlet. According to Eq. (11),
a rate equal to x;7 would elute component n 4 1 at temperature 7,.

Applying Eq. (47), one finds

T, — 0.57T,  [x;r\"/me
T, = 0577, < p ) (32)
Similarly
Tyer — 0.5TTg  [xpr\ /e
T,., — 05T, \ r (53)
n+3 n42 n+l n
al[ll ] | | | T
n+4 n+3 n+2 n+l
b {I[ [ | l ] Ton
n+5 n+é n43 n+2

c Ll [ | L J T

FiG. 11. Distribution of the components of a homologous series along the
column.
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Dividing Eq. (52) by Eq. (53) gives an equation which leads to the
relation

7-'n+1 - Tn = Tn+2 - Tn+1 (54)

This is because x,/x, is a fraction close to 1 (about 0.97 or 0.98) and
Yn+1 and y, ., are two large numbers, the ratio of which is also close to 1.
Furthermore, the geometric average of two values whose ratio does not
differ much from 1 is practically equal to their arithmetic average.

Equation (54) expresses the fact that, during temperature programming,
the members of a homologous series (above a certain carbon number
which is a function of the rate ») emerge from a chromatographic column
evenly spaced. The details of the derivation of Eq. (54) are given later in
Example 4.

A SIMPLE QUALITATIVE PROOF
OF THE CONSTANCY OF AT

Since the retention temperatures in Figs. 11(a) and 11(b) differ by
something like 15°C, it can be shown that the significant temperatures
corresponding to these two figures will also differ by approximately 15°C.
Applying Eq. (15), one can show that « decreases by about 29, in a 15°C
span. The assumption, therefore, that Figs. 11(a) and 11(b) are identical
is a reasonable assumption, so that

Xnyg = Xy (55)

We know also that in the case of homologous series and for a fixed
vapor pressure (fixed isothemal retention time ¢,), the temperature differ-
ence between consecutive members is about the same. This may be
expressed mathematically as

9T) o constant 56
n), = constan (56a)
or
oT
(5%-)" = constant (56b)

As an example, in the case of the paraffin hydrocarbon series, at a
vapor pressure equal to 100 mm Hg, the corresponding temperatures are
as shown in Table 6 (7).
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TABLE 6
Carbon no. n 6 7 8 9 i0
Temperature 7 (°C) 15.8 41.3 65.7 88.1 108.6
AT (°C) 25.5 24.4 22.4 20.5

Assumptions (55) and (56b) are sufficient to prove that consecutive
members should come out evenly spaced after a certain carbon number
n,. The reasoning goes as follows.

At the start of the chromatographic run the second component comes
out too soon, having a vapor pressure less than that of Component 1
when it was at the outlet. Peak 2 will be broader than Peak 1. The same
will also happen when Peak 3 comes out. Peak 3 will be wider than Peak
2 and the second spacing between Peaks 2 and 3 will be greater than that
between Peaks 1 and 2. This will continue until the spacing is big enough
to satisfy Eq. (56b). In this case Component n + 1 emerges at the same
vapor pressure as component n and with the same width. Once this
occurs the spacings will continue to be equal and consecutive members
are eluted evenly spaced. If we assume that a spacing was greater than the
one before it, this would mean that the same distance was covered in a
longer time at a higher average velocity, which is impossible. Similarly,
if we assume that a spacing is smaller than the one before it, this would
mean that the same distance was covered in a shorter time at a smaller
average velocity, which is also impossible. Therefore, all the spacings
should be equal. Slight differences in the magnitudes of the spacings are
due to slight inaccuracies in Assumptions (55) and (56).

MAGNITUDE OF THE TEMPERATURE DIFFERENCE AT,
FOR A HOMOLOGOUS SERIES

The retention temperature difference AT, for a homologous series
may be calculated from

ATfn = Tfn+1 - Tf 57

n

and then, by substituting in Eq. (48), a relation is obtained for AT,
An alternative derivation which leads to a simpler relation is to start
with Eq. (56b) written in terms of the constant spacing, so that

ar, = (). (58)
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For a homologous series, Eq. (6) gives the relation between ¢,, n, and

T. Since
oT ot, ot,
(&)= (&), ), &

Then by partial differentiation of Eq. (6), once with respect to n and once
with respect to 7, one can show that

at, = CIBAD - (T0) + Rinsd

(60)

RELATION BETWEEN #, AND r

For a homologous series the carbon number s, at which the spacings
start to be equal during temperature programming is a function of the
rate of linear temperature rise r; the higher the value of r, the lower the
value of n, and vice versa.

To deduce a mathematical relation between n, and r, we make use of
the fact that in Eq. (51), n approaches n, as (Ky, + 1)!/* approaches
(Ky)'/". If Z is equal to the ratio (Ky,)'/"/(Ky, + 1)'/?", then we can
assign to Z a value close to 1, say Z = 0.98, and n, would be the value of
n which satisfies the equation

(Ky,)'"

m =7 = (.98 (61)

This will lead to some mathematical difficulties. An alternative and
much simpler approach may be followed at a little loss in accuracy by
assuming a constant and reasonable value of K. For example, we may
assume a value of K = In 10 = 2.3 = 1/a,. This leads to

t 1

n—
rl,oao r

7 =1 (62)

This condition gives a value of n very close to n, because the corre-
sponding value of Z in Eq. (61) will vary from 0.98 to 0.995 as y varies
from 5 to 10, which shows that Eq. (62), in spite of its simplicity, is quite
satisfactory.

Equation (62) leads to the relation

n,=C + Cylnr (63)
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where

T

C=1+ <1n °>/lna0

tn.o

and
1
Cu = - m

Example 3

For the homologous series in Fig. 4, and for a linear rate of temperature
rise equal to (a) 3°C/min or (b) 0.01°C/min, calculate for T, = 20°C:

[. n,

2. The temperature and time from the start corresponding to #,

3. The value of the temperature spacing between consecutive members
at n,

Answer

At 20°C, ¢, . = 2 min, and a, = 1.8, with r = 3°C/min:

ri,0

1. The carbon number at the start of constant spacing is calculated
from Eq. (63) so that

n,=C + Cylnr

In (293/2) _ 1
In 1.8 In1.8

x In3 = 7.61

2. The temperature corresponding to n, is calculated from Eq. (48),
where a;, = 04343, T, =293, r=3, ¢, ,=2, a =18 n—1
=7.61—-1 = 6.61,

_0.4343(6000 + 6.61 x 500)
Tn = 1.987 x 293

ry,o

+1=1794

Substituting in Eq. (48), one gets

3 2 1.86'61 7.94 1/7.94
T, = 0.5657 x 203 + 0.4343 x 293< aletie . )

0.4343 x 293
= 350.4°K = 77.4°C

and the time from the start is (77.4 — 20)/3 = 18.1 min.
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3. The value of the temperature increment at n, can be calculated by
two methods.
First method:

ATfne = Tfne-)-l - Tf“g
= 3504°C

T;,,., is also calculated from Eq. (48). In this case n — 1 = 661 +1=
7.61

Ty

n

0.4343(6000 + 7.61 x 500)

Twrt = 1.087 x 293 + 1 =831

Substituting in Eq. (48), one gets
Ty,.., = 3612 and AT, = 10.8°C

Second method: AT, can also be calculated by substituting in Eq.
(60). In this case

_ 350.42[500{(1/350.4) — (1/293)} + 1.987In 1.8]
= 6000 + 6.61 x 500

ATy,

= 11.7°C
At 20°C, 1, = 2 min, and oy = 1.8, with = 0.01 °C/min.

I

3R 1
te=l+798 " mis

x In (0.01) = 17.3

2. Substituting in Eq. (48) as in Part (a), except that in this case n — 1
= 16.3, and

_0.4343(6000 + 16.3 x 500)

Tn = 1.987 x 293 +1=10.56

one gets
T,.. = 338.4°K = 65.4°C

and the time from the start is (65.4 — 20)/0.01 = 4540 min.
3. To calculate AT, :
First method:

ATfng = 'Tfn,+1 - Tf

ne
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Ty,.., s also calculated from Eq. (48) where n — 1 = 17.3 and

~ 0.4343(6000 + 17.3 x 500)
Tntr = 1.087 x 293

+1=1093

Substituting in Eq. (48), one gets
Ty,.., = 3463 and ATy, = 3463 — 3384 = 79°C
Second method: By substituting in Eq. (60) where T = 338.4 and
AH,, = 6000 + 16.3 x 500, one gets AT, = 7.61°C.

Example 4

Show that the statments upon which the derivation of Eq. (54) was
based are correct.
Answer

Dividing Eq. (52)/Eq. (53), one gets

T, — 0577, Ty, — 0577, x, e
Tpir — 0.57Ty T,y — 0577

X, e (64)
Since x/x, is very close to 1, and since y,,, and y,,, are two large
numbers whose ratio is also close to 1, it follows that the right-hand side
is practically equal to [. Substituting | for the right-hand side, T,
— 0.57T, becomes the geometric average between 7,,, — 0.57T, and
T, — 0.57T,. The ratio of the last two values does not differ much from 1.
In this case their geometric average is practically equal to their arithmetic
average so that

Tyi1 — 0577 = 3[(T,12 — 0.577%) + (T, — 0.57T,)]
which leads to

T = 3Ty + 7))
or
Tn+1’ Tn=Tn+2 - Tn+1 (54)
A numerical verification of the above statements is as follows: Accord-
ing to the definition of y given previously:
ab

Y=+ 1
0
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its value is very seldom less than 4, and the ratio y,, ,/y,+; IS also very
seldom more than 1.07. Furthermore, according to Eq. (32), the average
relative volatility can decrease by no more than 3% in a 15°C span and
also the fraction x is very seldom less than 0.5. Substituting these extreme
values in the right-hand side of Eq. (64), one gets

x11/7n+1 0_51/4

X, e T 05151

s = 0.98

Substituting more realistic values, we find
(xl)l/)’n+l/<x2)1/7n+2 — 0.61/7/0.6151/7'4 = 0.993

Similarly, the ratio (T, ., — 0.57Ty)/(T, — 0.57T,) is very seldom greater
than 1.2 and usually less than 1.14, This gives a geometric average equal
to 1.068 compared to an arithmetic average equal to 1.070.

Furthermore, the right-hand side is almost always less than 1, and this
makes the deviation from the arithmetic mean even less than the difference
between the geometric and the arithmetic means. In other words, the two
deviations tend to cancel one another, and Eq. (54) is sufficiently accurate.
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